Defence Investment Prioritization

Dr John A Steele DRDC Centre for Operational Research & Analysis To the 13th NATO OR&A Conference

© Her Majesty the Queen in Right of Canada (Department of National Defence), [year]

Challenge for NATO OR&A in a Changing Global Security Environment

Challenge for NATO OR&A in a Changing Global Security Environment

Defence Investment PrioritizationBest practice

- In the literature
- In NATO &
- In partner nations

1.0 Introduction - Origins

- Work "modelling value"
- Showing how Canada optimizes investments
- NATO SAS-134 "Linking Investment & Divestment to Defence Outcomes"
 - AUS, CAN, CZE, FIN, FRA, USA

1.1 Introduction – Problem

1.1 Introduction – Problem

Introduction – Defence Investment Portfolio Problem

Introduction – Defence Investment Portfolio Problem

Introduction – Defence Investment Portfolio Problem

- Assuming we know <u>something</u> about the future ...
 - What National Defence may need to address
 - How capabilities evolve
 - How current investments will deliver
- Assuming we have not yet confronted
 - Expected investment costs
 - Expected budget allocations

Outline

2.0 Types of literature

- 2.1 Financial
- 2.2 OR
- 2.3 Decision Analysis

3.0 Best Practice: (Portfolio) Decision Analysis

- Decision Quality
- 3.1 Frame decision, define process
- 3.2 Define success
- 3.3 Identify options
- 3.4 Measure success
- 3.5 Translate into value

3.0 Best Practice (cont'd)

- 3.6 Find total value
- 3.7 Interactions
- 3.8 Risk and uncertainty
- 4.0 Concluding invitation
 - How do YOU do it?

2.1 Financial

- The time value of money
 - Discount rates

Set goals for both

Real Options

Buying time while the future reveals itself

2.2 Operational Research

Computational strategies for classic problems

- Given lots of data
- Optimizing portfolios of
 - Known investment costs
 - Simple benefits
 - Sequential dependencies

2.2 Operational Research

Computational strategies for classic problems

- Given lots of data
- Optimizing portfolios of
 - Known investment costs
 - Simple benefits
 - Sequential dependencies

- Decisions are strategic
- Perilous if Objectives conflict
 - Uncertainty abounds

2.3 Decision Analysis

- Manage decision complexity with
 - Formal decision elements
- Most powerful
 - MAVT (outcomes certain)
 - MAUT (outcomes uncertain)
- Less powerful
 - Outranking
 - AHP
 - Non-compensatory

- Decision quality:
 - Profitable attention to each decision dimension

- Decision quality:
 - Profitable attention to each decision dimension
- Including
 - Decision frame (set-up)

- Decision quality:
 - Profitable attention to each decision dimension
- Including
 - Decision frame (set-up)
 - Creative, feasible alternatives

- Decision quality:
 - Profitable attention to each decision dimension
- Including
 - Decision frame (set-up)
 - Creative, feasible alternatives
 - Meaningful, reliable information

- Decision quality:
 - Profitable attention to each decision dimension
- Including
 - Decision frame (set-up)
 - Creative, feasible alternatives
 - Meaningful, reliable information
 - Clear values & trade-offs

- Decision quality:
 - Profitable attention to each decision dimension
- Including
 - Decision frame (set-up)
 - Creative, feasible alternatives
 - Meaningful, reliable information
 - Clear values & trade-offs
 - Logically correct reasoning

- Decision quality:
 - Profitable attention to each decision dimension
- Including
 - Decision frame (set-up)
 - Creative, feasible alternatives
 - Meaningful, reliable information
 - Clear values & trade-offs
 - Logically correct reasoning and
 - Commitment to follow-through

3.1 Best Practice: Frame the problem

Specify

- The type of portfolio
- The problem to be solved
- The key stakeholders
- Decision process
 - In-house Decision Analysis
 - Decision & Analysis teams
 - Decision Conferencing
 - Facilitated development of decision criteria & analysis

3.2 Best Practice: Define Portfolio Success

- Develop a structure of objectives using
 - Fundamental Objectives break-down to
 - Sub-objectives supported by
 - Means objectives
- Objectives should be
 - Operational
 - Comprehensive in aggregate
 - Non-redundant
 - Decomposable, and
 - As few as necessary

3.3 Best Practice: Identify, characterize investment options

Collect all developing investment options

- A single ND-wide project database: easy
- Multiple different project databases:
 - Maybe, with care, time & luck

With matured Fundamental Objectives

- "What investments are suggested by
 - Each Fundamental Objective?
 - Each pair of Fundamental Objectives?
- ightarrow Uncover overlooked options

3.4 Best Practice: Measure success against objectives

3.5 Best Practice: Translate metric scores into value types

- Identify types of value that
 - Metrics reflect
 - Stakeholders recognize
- Elicit how value accrues with metric

3.6 Best Practice: Combine value types with Swing Weights

 Pose trade-offs to elicit relative importance of different types of value

3.7 Best Practice: Account for investment interactions

- Dependency
 - Sequence
 - Value
 - Partially substitutable
 - Synergistic

	New	New	New	New
	Option	Option	Option	Option
	1	2	3	4
Option 1	Х	Х		Х
Option 2	Х		Х	Х
Option 3		Х	Х	Х

3.8 Best Practice: Assess risk and uncertainty

- Develop risk metrics
 - Threshold value
 - Metric, Cost, Schedule or Budget
 - Probability of exceeding

4.0 Conclusion: Literature vs National Practice

SAS-134 asks:

• How do *you* prioritize *your* defence investments?

Do you

- Make decisions on defence investment priority?
- Support decisions on defence investment priority with analysis?
- Work with someone who ... ?
- Know someone who ... ?
- Please speak with me after my talk.

Questions

DRDC | RDDC

SCIENCE, TECHNOLOGY AND KNOWLEDGE FOR CANADA'S DEFENCE AND SECURITY SCIENCE, TECHNOLOGIE ET SAVOIR POUR LA DÉFENSE ET LA SÉCURITÉ DU CANADA

© Her Majesty the Queen in Right of Canada (Department of National Defence), [year]

